If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7r^2+56r+84=0
a = 7; b = 56; c = +84;
Δ = b2-4ac
Δ = 562-4·7·84
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-28}{2*7}=\frac{-84}{14} =-6 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+28}{2*7}=\frac{-28}{14} =-2 $
| 3h^2+57h-2=0 | | (6m-1)+(5m+60)=180 | | 4^x-4^(x-1)=158^x= | | 4x+4=284 | | 3x^2-3x-11=0 | | x*2-9x-7=0 | | 4^x-4^(x-1)=15,8^x= | | 2c=5c–3c | | x-3/4=13 | | m-5.4=11.6 | | 2.1+.1x=8 | | 3+3n=27 | | 6v+9-v=5(v-2) | | 1.2+.2x=10 | | 4^x-4^(x-1)=15 | | x-51/8=33/8 | | -3x-3x=-12 | | 10x-20=7x=4 | | .m-5=7 | | 5x-2(x+4)-10=30 | | 24.y+4=15 | | 6x-22=140 | | 2x+2-3x=3x-4 | | x/x+4+8x+28/x^2+7x+12=x-3/x-6 | | e/4=-8 | | 2/3-x=1/9 | | 5-6x=4-2x | | 28=2u+12 | | 2^3x-6=1/8 | | 8(x+3)=7(x+12) | | 10k+2=2 | | 2x+6=7-x-14 |